Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5.

نویسندگان

  • Eiki Takimoto
  • Diego Belardi
  • Carlo G Tocchetti
  • Susan Vahebi
  • Gianfrancesco Cormaci
  • Elizabeth A Ketner
  • An L Moens
  • Hunter C Champion
  • David A Kass
چکیده

BACKGROUND Recent cell-based studies have found that cGMP synthesis and hydrolysis by phosphodiesterase (PDE) appear compartmentalized, with nitric oxide synthase-derived and/or PDE type 5 (PDE-5)-hydrolyzable cGMP undetected at the sarcolemmal membrane in contrast to cGMP stimulated by natriuretic peptide. In the present study, we determine the functional significance of such compartments with a comparison of beta-adrenergic modulation by PDE-5 inhibition to that of natriuretic peptide stimulation in both cardiomyocytes and intact hearts. The potential role of differential cGMP and protein kinase G stimulation by these 2 modulators was also studied. METHODS AND RESULTS Intact C57/BL6 mouse hearts were studied with pressure-volume analysis, and adult isolated myocytes were studied with fluorescence microscopy. PDE-5 inhibition with 0.1 to 1 micromol/L sildenafil (SIL) suppressed isoproterenol (ISO)-stimulated contractility, whereas 10 micromol/L atrial natriuretic peptide (ANP) had no effect. ISO suppression by SIL was prevented in cells pretreated with a protein kinase G inhibitor. Surprisingly, myocardial cGMP changed little with SIL+ISO yet rose nearly 5-fold with ANP, whereas protein kinase G activation (vasodilator-stimulated protein phosphorylation; ELISA assay) displayed the opposite: increased with SIL+ISO but unaltered by ANP+ISO. PDE-5 and ANP compartments were functionally separated, as inhibition of nitric oxide synthase by N(w)-nitro-L-arginine methyl ester eliminated antiadrenergic effects of SIL, yet this was not restorable by co-stimulation with ANP. CONCLUSIONS Regulation of cardiac beta-adrenergic response by cGMP is specifically linked to a nitric oxide-synthesis/PDE-5-hydrolyzed pool signaling via protein kinase G. Natriuretic peptide stimulation achieves greater detectable increases in cGMP but not protein kinase G activity and does not modulate beta-adrenergic response. Such disparities likely contribute to differential cardiac regulation by drugs that modulate cGMP synthesis and hydrolysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of type 5 phosphodiesterase counteracts β2-adrenergic signalling in beating cardiomyocytes.

AIMS Compartmentalization of cAMP and PKA activity in cardiac muscle cells plays a key role in maintaining basal and enhanced contractility stimulated by sympathetic nerve activity. In cardiomyocytes, activation of adrenergic receptor increases cAMP production, which is countered by the hydrolytic activity of selective phosphodiesterases (PDEs). The intracellular regional dynamics of cAMP produ...

متن کامل

Combination therapy with beta-adrenergic receptor antagonists and phosphodiesterase inhibitors for chronic heart failure.

Abstract Rational use of phosphodiesterase inhibitors represents an ongoing controversy in contemporary pharmacotherapy for heart failure. In randomized clinical trials, phosphodiesterase inhibitors increased cardiac output at the expense of worsening the rates of sudden cardiac death and cardiovascular mortality. Preliminary findings from ongoing clinical and preclinical investigations of phos...

متن کامل

Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway.

beta-Adrenergic signaling via cAMP generation and PKA activation mediates the positive inotropic effect of catecholamines on heart cells. Given the large diversity of protein kinase A targets within cardiac cells, a precisely regulated and confined activity of such signaling pathway is essential for specificity of response. Phosphodiesterases (PDEs) are the only route for degrading cAMP and are...

متن کامل

Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes.

RATIONALE Adenylyl cyclase (AC) represents one of the principal molecules in the β-adrenergic receptor signaling pathway, responsible for the conversion of ATP to the second messenger, cAMP. AC types 5 (ACV) and 6 (ACVI) are the 2 main isoforms in the heart. Although highly homologous in sequence, these 2 proteins play different roles during the development of heart failure. Caveolin-3 is a sca...

متن کامل

A complex phosphodiesterase system controls beta-adrenoceptor signalling in cardiomyocytes.

beta-Adrenergic signalling mediates the positive inotropic effect of catecholamines on cardiomyocytes, mainly through cAMP generation and subsequent activation of PKA (protein kinase A). Given the large diversity of PKA targets within cardiac cells, a precisely regulated and confined activity of such signalling pathways is essential for the specificity of response. PDEs (phosphodiesterases) con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 115 16  شماره 

صفحات  -

تاریخ انتشار 2007